空气质量预测
微软亚洲研究院曾经用大数据和人工智能的算法预测全国200多个城市的空气质量。
因为空气质量受很多复杂的影响,包括周边的楼房密度,周边的交通拥堵情况,周边的扩散情况,导致整个城市空气质量不均匀。
我们把京津冀、珠三角、长三角城市群数据放在一起,做大尺度的系列预测和分析。有了这个信息之后,你会发现每次空气质量从好变坏过程中,你就知道哪里先变坏,哪里后变坏,知道它的传播过程。政府是明确需要知道非常细的空气质量的数据,甚至要细到宾馆级,因为有的时候我们领导人就住在某个宾馆。
预测未来。我的预测是系列预测,空气质量预测既要看天还要看人,是个很困难的事情。如果你要看细,细到西直门、东直门怎么样?这非常困难。还有空气质量拐点的预测,我们知道当刮大风和下大雨时,空气质量从500瞬间就变成了50,这个拐点的出现对政府来说是极关重要的。
可是,空气质量的拐点为什么那么重要呢?举例说明,政府曾经做了很多措施限流限行,关闭了河北的工厂,以北京为中心画一个圆,把圆里面所有的工厂全关掉,使得我们的空气质量保持在100以下。但如果你知道明天是拐点,明天会下降干嘛去关它?这一个决策就能够帮国家避免上百亿上千亿的损失。
微软亚洲研究院还在贵阳落地中国第一个交通流量图。这个地方显示的是车的流量不是简单的速度,对政府的管理、规划它一定要知道有多少车经过,即流量。有了流量之后就能算出速度、油耗,每个路段上面都可以算出来,进而可以看出来每个路段实时排放的PM2.5有多少,现在能把车的尾气排放算出来,结合空气中测点的读数,我们知道空气中尾气排放和PM2.5结合在一起,我们就能够正确回答空气中汽车尾气排放和PM2.5到底占多少,这个对政府的指导具有重要的意义。
做好智能城市的4个关键
第一,要理解行业知识。如果我不懂环境,不跟环境学家交流,也不知道他们做了什么东西,那么他们行业里面也无法接受大数据的分析结果。
最近我搞了两年多环境,现在清华大学环境学院每年请我给他们环境学院的学生研究生上课,只有达到这个程度之后,才能跟别的行业融合。
第二,对数据的理解很重要。路面上的出租车交通轨迹不光反映了出租车交通容量,也反映了人们的出行规律。出行规律反映的是功能、经济、环境状况,如果这样想的话,你会发现我们的数据永远不缺,大数据时代我们不缺数据,缺的是心不够开放。大数据的价值把多个数据融合在一起,做到1+1大于2的结果,这才是它的特点和魅力。
第三,深度学习。我们看到各种各样的算法不只是机器学习,有深度学习、机器学习、数据挖掘还有数据库,很多方法索引加学习加模拟结合在一起,很多是把数据融合在一块。
第四,数据科学家。数据科学家非常难培养,培养这个人至少7-10年,很多项目只要有了这一个人,就能把这一个东西传到一块,一个好的数据科学家站在云平台上面,看问题想数据观模型,然后把模型部署到云平台上面,才能解决鲜活的问题,这才是数据科学家。
相关阅读:
相关推荐:
转载请注明出处。